Hidden Markov Model-Based CNV Detection Algorithms for Illumina Genotyping Microarrays

نویسندگان

  • Eric L Seiser
  • Federico Innocenti
چکیده

Somatic alterations in DNA copy number have been well studied in numerous malignancies, yet the role of germline DNA copy number variation in cancer is still emerging. Genotyping microarrays generate allele-specific signal intensities to determine genotype, but may also be used to infer DNA copy number using additional computational approaches. Numerous tools have been developed to analyze Illumina genotype microarray data for copy number variant (CNV) discovery, although commonly utilized algorithms freely available to the public employ approaches based upon the use of hidden Markov models (HMMs). QuantiSNP, PennCNV, and GenoCN utilize HMMs with six copy number states but vary in how transition and emission probabilities are calculated. Performance of these CNV detection algorithms has been shown to be variable between both genotyping platforms and data sets, although HMM approaches generally outperform other current methods. Low sensitivity is prevalent with HMM-based algorithms, suggesting the need for continued improvement in CNV detection methodologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of “Protein Microarrays” Edited by Mark Schena

Array-based technologies have been used to detect chromosomal copy number changes (aneuploidies) in the human genome. Recent studies identified numerous copy number variants (CNV ) and some are common polymorphisms that may contribute to disease susceptibility. We developed, and experimentally validated, a novel computational framework (QuantiSNP) for detecting regions of copy number variation ...

متن کامل

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

متن کامل

QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data

Array-based technologies have been used to detect chromosomal copy number changes (aneuploidies) in the human genome. Recent studies identified numerous copy number variants (CNV) and some are common polymorphisms that may contribute to disease susceptibility. We developed, and experimentally validated, a novel computational framework (QuantiSNP) for detecting regions of copy number variation f...

متن کامل

MixHMM: Inferring Copy Number Variation and Allelic Imbalance Using SNP Arrays and Tumor Samples Mixed with Stromal Cells

BACKGROUND Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that obtained from the total DNA signal available from arra...

متن کامل

Distribution and Functionality of Copy Number Variation across European Cattle Populations

Copy number variation (CNV), which is characterized by large-scale losses or gains of DNA fragments, contributes significantly to genetic and phenotypic variation. Assessing CNV across different European cattle populations might reveal genetic changes responsible for phenotypic differences, which have accumulated throughout the domestication history of cattle as consequences of evolutionary for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014